Comparing Mineral and Chemical Compounds, in Vitro Gas Production and Fermentation Parameters of some Range Species in Torbat-e Jam, Iran

Document Type : Research and Full Length Article


Department of Animal Science, Faculty of Agriculture and Animal Science, University of Torbat-e Jam, Torbat-e Jam, Iran


Plants growable in rangelands play an important role in the feeding of ruminants; hence, the nutritive value of four plants (Falcaria vulgaris, Malva neglecta, Chenopodium album, and Polygonum aviculare) was determined by different laboratory methods. The plant samples were randomly collected in vegetative phase from different rangelands of Torbat-e Jam, Iran in spring 2018. The range of dry matter (125 to 184 g/kg), neutral detergent fiber (252 to 358 g/kgDM), acid detergent fiber (155 to 258 g/kgDM), crude protein (172 to 275 g/kgDM), ether extract (9 to 41 g/kgDM), crude fiber (135 to 185 g/kgDM), ash (140 to 252 g/kgDM), acid detergent lignin (41 to 123 g/kgDM), nitrogen-free extract (300 to 496 g/kgDM), and non-fiber carbohydrates (183 to 356 g/kgDM) were different between the studied plants. The mineral composition was also different between treatments and they were containing reasonable minerals as compared to some other plants commonly used as forage feed. The highest in vitro organic matter digestibility (OMD: 876 g/kgDM) and in vitro dry matter digestibility (DMD: 828 g/kgDM) were observed in Polygonum aviculare. The other fermentation parameters (NH3-N, total volatile fatty acids: TVFA, and pH) were also different among the plant species when incubated in the laboratory medium. There was a strong positive correlation between 24 h gas production with OMD, DMD and TVFA and negative correlation between 24 h gas production with crude protein, NH3-N and ether extract. The results showed that each of the four studied plants can be considered as a potential source of feedstuff for the alleviation of problems associated with lack of forage in Iran. According to these reported data, it seems that the nutritional value of Falcaria vulgaris and Polygonum aviculare is higher than the other two plants.


Main Subjects

Abdalla, A. L., Louvandini, H., Sallam, S., Bueno, I., Tsai S., Figueira A., 2012. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Trop. Anim. Health. Prod., 44, 953-964.
Adedapo, A., Jimoh, F., Afolayan, A., 2011. Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Bidens pilosa and Chenopodium album. Acta Pol. Pharm., 68, 83-92.
Al-Masri, M., 2009. An in vitro nutritive evaluation and rumen fermentation kinetics of Sesbania aculeata as affected by harvest time and cutting regimen. Anim. Health. Prod., 41, 1115-1126.
ANKOM Technology., 2005. Method for determining acid detergent lignin in Beakers method 8. Available at
ANKOM Technology., 2006a. Acid detergent fiber in feeds-filter bag technique method 12. Available at
ANKOM Technology., 2006b. Neutral detergent fiber in feeds-filter bag technique method 6. Available at
AOAC., 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists Washington, DC, USA.
AOAC., 1999. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA.
Arshadullah, M., Anwar, M., Azim, A., 2009. Evaluation of various exotic grasses in semi-arid conditions of Pabbi Hills, Kharian range. J. Anim. Plant Sci., 19(2), 85-89.
Arzani, H., Zohdi, M., Fish, E., Zahedi Amiri, G. H., Nikkhah, A., Wester, D., 2004. Phenological effects on forage quality of five grass species. J. Range Manage., 57(6), 624-629.
Barnett, A. J. G., Reid, R. L., 1957. Studies on the production of volatile fatty acids from grass in artificial rumen. 1. Volatile fatty acids production from fresh grasses. J. Agric. Sci., 48, 315-321.
Bach, A., Calsamiglia, S., Stern, M. D., 2005. Nitrogen metabolism in the rumen. J. Dairy Sci., 88, E9-E21.
Blummel, M., Ørskov, E. R., 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in prediction of feed intake in cattle. Anim. Feed Sci. Technol., 40, 109-119.
Cone, J. W., Van Gelder, A. H., 1999. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol., 76, 251-264.
Cook, C. W., Stubbendieck, J., 1986. Range research: basic problems and techniques. society for range management, Colorado, 317 pp.
Dehghani Bidgoli, R., 2018. Forage quality of Calligonum comosum in three phenological growth stages (Case study: Kashan rangelands, Iran). J. Range. Sci., 8(3), 309-314.
Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., Lopez, S., France, J., Bannink, A., 2012. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol., 172, 22-33.
Ezzat, S., Fadlalla, B., Ahmed, H., 2018. Effect of growth stage on the macro mineral concentrations of forbs and grasses in a semi-arid region of Sudan. J. Range. Sci., 8(1), 23-29.
France, J., Siddons, R. C., 1993. Volatile fatty acid production. In: Forbes, J.M., France, J. (ed.), Quantitative aspects of ruminant digestion and metabolism. CAB International, Wallingford, UK.
Gqaza, B. M., Njume, C., Goduka, N. I., George, G., 2013. Nutritional assessment of Chenopodium album L. (Imbikicane) young shoots and mature plant-leaves consumed in the Eastern Cape province of South Africa. In: international proceedings of chemical, biological and environmental engineering, Singapore. 53(19), 97-102.
Getachew, G., Blummel, M., Makkar, H. P. S., Becker, K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol., 72, 261-281.
Getachew, G., Robinson, P. H., DePeters, E. J., Taylor, S. J., 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol., 111, 57-71.
Kamalak, A., 2010. Determination of potential nutritive value of Polygonum aviculare hay harvested at three maturity stages. J. Appl. Anim. Res., 38, 69-71.
Kamalak, A., Canbolat, O., Erol, A., Kilinc, C., Kizilsimsek, M., Ozkan, C.O., Ozkose, E., 2005. Effect of variety on chemical composition, in vitro gas production, metabolizable energy and organic matter digestibility of alfalfa hays. LRRD., 17(7).
Kaya, I., Incekara, N., 2000. Contents of some wild plant species consumed as food in Aegean Region. Turk. J. Weed Sci., 3, 56-64.
Kazemi, M., Tahmasbi, A. M., Valizadeh, R., Naserian, A. A., Moheghi, M. M., 2009. Assessment of nutritive value of four dominant weed species in range of khorasan distinct of Iran by in vitro and in situ techniques. J. Anim. Vet. Adv., 8, 2286-2290.
Kazemi, M., Tahmasbi, A.M., Naserian, A. A., Valizadeh, R., Moheghi, M. M., 2012. Potential nutritive value of some forage species used as ruminants feed in Iran. Afr. J. Biotechnol., 11, 12110-12117.
Khazaei, M., Salehi, H., 2006. Protective effect of Falcaria vulgaris extract on ethanol induced gastric ulcer in rat. Iran.J. Pharmacol. Ther., 5, 43-46.
Komarek, A. R., Manson, H., Theix, N., 1996. Crude fiber determinations using the ANKOM fiber system. ANKOM technology publication 102.
Komolong, M. K., Barber D. G., McNeill D. M., 2001. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of lucerne hay (Medicago sativa) with increasing levels of quebracho tannins. Anim. Feed Sci.Technol., 92,59-72.
Krishnamoorthy, U., Steingass, H., Menke K. H., 1991. Preliminary observation on the relationship between gas production and microbial protein synthesis in vitro. Arch. Anim. Nutr., 41, 521-526.
Kulivand, M., Kafilzadeh, F., 2015. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Sci., 37, 9-14.
Larbi, A., Smith, J. W., Kurdi, I. O., Adeknle, I. O., Raji, A. M., Ladipo, D. O., 1998. Chemical composition, rumen degradation, and gas production characteristics of some multipurpose fodder trees and shrubs during wet and dry seasons in the humid tropics. Anim. Feed Sci. Technol., 72, 81-96.
Marjorie, M. C., 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12, 564-582.
Markham, R., 1942. A steam distillation apparatus suitable for micro-kjeldahl analysis. Biochem. J., 36, 790-791.
Mauricio, R. M., Owen, E., Mould, F. L., Givens, I., Theodorou, M. K., France, J., Davies, D. R., Dhanoa, M. S., 2001. Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages. Anim. Feed Sci. Technol., 89, 33-48.
McGrath, S. R., Bhanugopan, M. S., Dove, H., Clayton, E. H., Virgona, J. M., Friend, M. A., 2015. Mineral supplementation of lambing ewes grazing dual-purpose wheat. Anim. Prod. Sci., 55, 526-534.
Menke, K. H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev., 28, 7-55.
Naseri, S., Adibi, M. A., Kianian, M. K., 2017. Forage quality of endangered species of Astragalus fridae Rech. F. in Semnan province, Iran. J. Range. Sci., 7(4), 387-399.
Ndlovu, L. R., Nherera F. V., 1997. Chemical composition and relationship to in vitro gas production of zimbabwean browsable indigenous tree species. Anim. Feed Sci. Technol., 69, 121-129.
Noroozi, J., Akhani, H., Breckle, S., 2008. Biodiversity and phytogeography of the alpine flora of Iran. Biodivers. Conserv., 17: 493-521.
NRC., 2007. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. 6rd ed. Washington: National Academy Press.
Nsahlai, I. V., Siaw, D., Osuji, P. O., 1994. The relationship between gas production and chemical composition of 23 browses of the genus Sesbania. J. Sci. Food Agric., 65, 13-20.
Ørskov, E. R., McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci., 92, 499-503.
Parissi, Z. M., Papachristou, T. G., Nastis, A. S., 2005. Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Anim. Feed Sci. Technol. 123-124, 119-128.
Plaizier, J. C., Krause, D. O., Gozho, G. N., McBride, B. W., 2009. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J., 176, 21-31.
SAS Institute, Inc., 2002. SAS user’s guide: Statistics. Version 9.1. SAS Institute, Inc., Cary, NC.
Seyyednejad, S. M., Koochak, H., Darab pour, E., Motamedi, H., 2010. A survey on Hibiscus rosa-sinensis, Alcea rosea L. and Malva neglecta Wallr as antibacterial agents. Asian Pac. J. Trop. Med., 3, 351-355.
Shadnoush, G., 2014. Chemical composition and in vitro digestibility of some range species in rangelands of Chaharmahal and Bakhtiari province, Iran. J. Range. Sci., 3(4), 343-352.
Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G., Russell, J. B., 1992. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci., 70, 3562-3577.
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48, 185-197.
Turan, M., Kordali, S., Zengin, H., Dursun, A., Sezen, Y., 2003. Macro and micro mineral content of some wild edible leaves consumed in eastern Anatolia. ‎Acta Agric.Scand B., 53, 129-137.
Tylutki, T. P., Fox, D. G., Durbal, V. M., Tedeschi, L. O., Russell, J. B., Van Amburgh, M. E., Overton, T. R., Chase, L. E. and Pell, A. N., 2008. Cornell net carbohydrate and protein system: a model for precision feeding of dairy cattle. Anim. Feed Sci. Technol., 143, 174-202.
Van Soest, P. J., 1994. Nutritional ecology of the ruminant. Cornell university press, Ithaca, NY, USA.
Van Soest, P. J., Robertson, J. B., Lewiss, B. A., 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583-3597.
Wolin, M. J., 1960. A theoretical rumen fermentation balance. J. Dairy Sci., 43, 1452-1459.
Volume 9, Issue 4
October 2019
Pages 351-363
  • Receive Date: 19 September 2018
  • Revise Date: 14 February 2019
  • Accept Date: 24 February 2019
  • First Publish Date: 01 October 2019